
BACKTALK

September 2006 www.stsc.hill.af.mil 31

First things first: In my July 2006 BackTalk article, “e-
Dorado: The Lost Centric City of Information,” the Office

of the Secretary of Defense (OSD) net-centricity quote and ref-
erence were incorrect. The word censors should have been sensors
and the reference should have been the OSD Net-Centric
Checklist [1]. Ironically, only one astute reader caught the faux
pas. In the wake of the Patriot Act and the National Security
Agency’s warrantless surveillance controversy, can I
presume most of you thought censorship was part of
net-centric warfare?

With quality on my mind, let’s move on to this
issue’s theme – Software Assurance. The DoD relates
software assurance to the level of confidence that software
functions as intended and is free of vulnerabilities ... [2].
NASA adds that software assurance is a planned and
systematic set of activities that ensures that software processes
and products conform to requirements, standards, and proce-
dures [3]. The essence of software assurance is pre-
dictability, trustworthiness, and conformance.
Trustworthiness and process conformance receive
plenty of press, so I will leave them to the security
and process enthusiasts and focus on predictability.

With regard to predictability, the DoD wants soft-
ware that is accurate (functions as intended) and pre-
cise (with confidence). I know, many readers are say-
ing, “Gary, accuracy and precision are synonymous.”
Well, maybe in English 101, but not in science, engi-
neering, and, as it turns out, marksmanship.

Several years ago, my son, Matthew, decided to
obtain his rifle merit badge. After a safety lecture, we
proceeded to the gun range where shooters sit side-
by-side, taking 10 shots at individual targets similar to
the target in Figure 1. Matthew was
somewhat timid, having never handled
a gun, so I agreed to shoot with him to
ease his doubts.

We methodically fired 10 rounds,
waited for the range to clear, and then
marched to our targets to check our
results. Concerned about my son’s tally
I watched as his shoulders slumped
and his head dropped. This was not a
good sign. I looked over his shoulder.
His target looked exactly like Figure 1
– clean, no bullet holes, not even one!
While considering how to handle the situation, I glanced at my
target, which looked like Figure 2, and there was my answer.

Instead of 10 bullet holes, my target had 20. Matthew shot at
my target and not his own. I shared my discovery with Matthew
and his shoulders went back, his head snapped up, and later that
day he earned the merit badge.

Although I could not differentiate my bullet holes from my
son’s, I did find the target pattern intriguing. Two distinct pat-
terns appeared on the target. Ten holes were grouped around the
center bull’s-eye and slightly high. The other 10 holes are tightly
grouped below and left of the center bull’s-eye. In subsequent
rounds, we found Matthew’s targets to be tightly grouped and
below center-left. I deduced that Matthew’s shots were precise

(his shots produced similar results – tightly grouped holes), but
not accurate (his shots were below and left of the center bull’s-
eye) and my shots were more accurate (around the center bull’s-
eye) but less precise (not as tightly grouped).

Figure 3 is a statistical view of accuracy versus precision. In
software development terms, the “Actual Target” in Figure 3 rep-
resents the customer’s bona fide requirements. The statistical

depiction illustrates that you can be precise but not
accurate, accurate but not precise or both. The DoD
wants both – emulating user bona fide requirements
(accuracy) with little variance over time (precision).

Accuracy requires that developers discern true refer-
ence values (requirements). However, the capricious
nature of software requirements makes that discern-
ment difficult, requiring focus, patience, and clear com-
munication.

That reminds me of the story of the project man-
ager who was late for a design review. Driving to the
review, he tried to save time by slowing down and
rolling through stop signs. A police officer stopped the
project manager and cited him for failure to stop at a
stop sign. Being a project manager, he naturally felt he
was right and tried to convince the officer that he did
slow down at each light. The officer replied, “But you
did not stop.” The project manager continued his plea,
explaining that he slowed down and looked both ways.
The officer replied, “But you did not stop.” He
explained that he slowed down and no one was hurt.
The officer replied, “But you did not stop.”

Rather than cutting his losses, the project
manager, in typical project manager style, pressed the
officer to the limit to avoid the ticket. Finally frustrated,

the officer pulled the project manager
from the car and started beating him
with his baton. The project manager
started to scream and yelled to the
officer, “…stop, please stop!” To
which the officer replied, “Do you
want me to stop or just slow down?”

What’s my point? Aim at the right
target then worry about precision, beat
your project manager occasionally, and
know when to stop.

— Gary A. Petersen
Shim Enterprises, Inc.

gary.petersen@shiminc.com

References
1. Office of the Assistant Secretary of Defense for Networks

and Information Integration/Department of Defense Chief
Information Officer. “Net-Centric Checklist 2.1.3.” 12 May,
2004.

2. Department of Defense Software Assurance Initiative. 13
Sept. 2005.

3. National Aeronautics and Space Administration. “Software
Assurance Standard.” NASA-STD-2201-93. 10 Nov. 2002.

Ready, Fire, Aim!

Figure 2

Figure 1

Probability
Density

Actual Target

Accuracy

Value

Precision

Figure 3

Figure 2

Figure 1

Probability
Density

Actual Target

Accuracy

Value

Precision

Figure 3

Figure 2

Figure 1

Probability
Density

Actual Target

Accuracy

Value

Precision

Figure 3

Figure 1: Individual
Target

Figure 2: Twenty
Bullet Holes

Figure 3: Accuracy Versus Precision

